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Abstract
A common approach to the exploration versus exploitation trade-off in reinforcement learning is
the exploration bonus method. Its core idea is to add bonus to actions that encourage exploration.
However, previous algorithms using this method defined the bonus as a function of the number of
times an action was previously selected, which can lead to inefficient exploration in some cases.
Here we propose a new algorithm motivated by information theory, in a different way than previ-
ously used in reinforcement learning, to define a more principled bonus function. We simulate our
algorithm in a representative scenario and show that it outperforms previous algorithms.

Keywords: Reinforcement Learning, Exploration versus Exploitation Trade-off, Information The-
ory

1. Introduction

The exploration versus exploitation trade-off is a well-known unresolved conflict in reinforcement
learning: should an agent select an action that is known to be beneficial or an unfamiliar action that
could provide more valuable information. Many algorithms (e.g., Brafman and Tennenholtz (2003);
Strehl and Littman (2005, 2008); Kolter and Ng (2009); Lopes et al. (2012)) use the exploration
bonus method to handle this conflict. In this method the agent assigns a bonus to actions and states
that previously were not selected much. Each of the aforementioned algorithms uses a different
bonus function, but all of them define the bonus to be some (decreasing) function of the number of
times an action was previously selected.

The exploration bonus method was shown to be useful both theoretically and empirically. How-
ever, there are some cases where following this method, as was used so far, leads to undesirable
results. For example, consider the following extreme case: suppose the agent can select between
two actions a1 and a2. Its observations so far are that a1 always led to the same state while a2
always led to a new state. In this case the agent can reasonably presume that a1 is much more de-
terministic than a2, and thus, for an efficient exploration, the bonus assigned to a2 should be larger
than the bonus assigned to a1. Therefore, efficient exploration cannot be achieved if the bonus is
only a function of the number of times an action was previously selected. Generally, this problem
occurs whenever the actions have varied degrees of ”randomness”.

We propose a bonus function that depends on the states that the agent reached so far, unlike
previous works. Inspired by a line of work that combines information theory and control (Tishby
and Polani (2011); Rubin et al. (2012); Todorov (2006); Kappen (2005)), we use notion of predictive
information to quantify the predictability of our actions (i.e., see Cover and Thomas (2012); Bialek
et al. (2001)). Plugging this new measure into the exploration bonus method yields a new algorithm,
which we call Information-Based Exploration (IBE). We then show a representative scenario where
IBE outperforms the other algorithms (R-max, Bayesian Exploration Bonus, ε-greedy, and Model-
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based Interval Estimation with Exploration Bonus). Also, we demonstrate that when the degrees of
randomness of the transition probabilities are similar to one another, IBE’s performance is not much
different than the other algorithms.

We mention that while information theory was already used in reinforcement learning (e.g.,
Tishby and Polani (2011); Rubin et al. (2012); Todorov (2006); Kappen (2005); Van Hoof et al.
(2015); Peters et al. (2010); Schulman et al. (2015); Still and Precup (2012)), our results are fun-
damentally different. This is reflected, for example, in the fact that all these works yield stochastic
policies, while our approach enables exploration even using a deterministic policy.

2. Preliminaries

2.1 Markov Decision Process

A (finite) Markov Decision Process (MDP) is a tuple (S,A,R, P ) where S is a finite state space;
A is a finite action space; R : S × A × S → R is a reward function, and P (·|s, a) is a probability
distribution over S for any a ∈ A, s ∈ S. A (deterministic) policy is a mapping from states to actions
π : S → A. Denote the initial state by s0 and the state at time i by si+1, i.e., si+1 ∼ P (·|si, π(si)).
In this work, we focus on a setting where the aim is to reach some terminal state with maximum
expected rewards. This is known in the literature as ’episodic markov decision process’. To this
aim, we introduce a new terminal state sgoal which is an absorbing state (i.e., P (sgoal|sgoal, ·) = 1)
We assume here that all rewards are negative (i.e., costs with R(s, a) < 0) and the absorbing state
is ’cost-free’ (i.e., R(sgoal, ·) = 0). In broad terms, the agent’s objective is to find a policy that
maximizes the expected sum of reward

R =
∞∑
i=0

E
si+i

R(si, π(si), si+1).

When the transition probability P is known, an optimal policy can be found using the classical
value-iteration algorithm (see Sutton and Barto (1998)). This case is easy to solve because all the
information is known and thus the exploration versus exploitation trade-off does not arise. Hence,
the more interesting case, that we consider in this paper, is when P is unknown (i.e., only the states
that the agent has visited, s0, s1, . . ., are observed). For simplicity of notation we assume, without
loss of generality, that the reward function R, the states S and the actions A are known, as was done
in Kolter and Ng (2009).

2.2 Information Theory

Throughout this work we will use a known measure of closeness between distributions, the Kullback-
Leibler divergence (see Cover and Thomas (2012)). The divergence from q2 to q1 is defined as

D[q1||q2] :=
∑
x

q1(x) log
q1(x)

q2(x)
.

We will sometimes use this divergence with distributions over paths of actions and states s0, a0, s1, a1, . . .
which be be denoted by Pp,π, where the paths are generated using some transition probability
p(s′|s, a) and a policy π(a|s).
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3. Our Results

Our starting point is the framework suggested in Tishby and Polani (2011) for formally describing
the perception-action cycle. This framework is based on the relationship between Predictive In-
formation and learning (Bialek et al. (2001)), where the mutual information between the past and
the future of a process is shown to be a universal regularizar of learning processes. The predictive
information regularization, when applied to MDP processes, adds the flow of information between
the agent and its environment to the standard MDP problem. Thus, instead of just maximizing the
expected sum of reward using policy π1 when the transition probability is p1, the agent is also re-
quired to minimize the distance to some prior behavior defined by transition probability p̂ and a
policy π̂

D[Pp1,π1 ||Pp2,π2 ] = E log
Prp1π1(s0, a0, s1, a1, . . .)

Prp̂,π̂(s0, a0, s1, a1, . . .)

= E log
π1(a0|s0)p1(s1|s0, a0)π1(a1|s1) . . .
π̂(a0|s0)p̂(s1|s0, a0)π̂(a1|s1) . . .

=
∑
t

E log
π1(at|st)
π̂(at|st)

+ E log
p1(st+1|st, at)
p̂(st+1|st, at)

The first term corresponds to the flow of information from the agent to the environment (by means of
action selection) and the second term corresponds to the flow of information from the environment
back to the agent (sensory perception). In this work we focus on a deterministic policy which
practically eliminates the first term and thus we consider only the information from the environment
to the agent.

Since the agent does not know the transition probability and it only knows the observations,
then P cannot be used instead of p1, so we settle with the empirical distribution instead. But how
should the empirical distribution Pemp be updated. One natural choice is using Bayesian updating
of categorical distribution with Dirichlet prior which is

Pemp(s
′|s, a) = visited(s, a, s′) + c

visited(s, a) + c|S|
,

where c is some constant, visited(s, a, s′) is the number of times that the agent reached state s′ after
selecting action a from state s, and visited(s, a) =

∑
s′ visited(s, a, s

′) is the number of times the
agent selected action a from state s. The constant c is some parameter that should be larger than
0; if c = 0 then after one observation the agent will mistakenly think that Pemp is deterministic.
Without loss of generality we set the prior to be the non-informative uniform distribution over the
states, i.e., p̂(s′|s, a) = 1/|S|. To sum up, the agent will minimize the following free energy

Fπ(s) = Ea,s′
[
−βR(s, a) + log

Pemp(s
′|s, a)

p̂(s′|s, a)
+ Fπ(s′)

]
.

Luckily, the agent can easily solve this problem using the value iteration algorithm where now the
”reward” is the local free energy

f(s, a, s′) = βR(s, a)− log
Pemp(s

′|s, a)
p̂(s′|s, a)

.

It is important to notice that f is different from the usual reward in MDP as it keep changing as a
function of the information the agent has on the environment.
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3.1 Algorithm

The IBE algorithm is summarized in the following pseudocode. It can be viewed as using the
exploration bonus method where now (unlike previous works) the bonus depends on the states that
the agent reached so far. As will be seen in the next section, it will preform better than other
algorithms when the sensory transition term is quite different for different actions.

Algorithm: Information-Based Exploration
s← start-state, visited← 0 //Initializations
loop
f(s, a, s′) = βR(s, a, s′)− log

Pemp(s′|s,a)
p̂(s′|s,a)

π ← value-iteration(Pemp, f)
choose an action a← π(s)
get to new state s′

visited(s, a, s′)← visited(s, a, s′) + 1
for s′′ ∈ S do
Pemp(s

′′|s, a)← visited(s,a,s′′)+c
visited(s,a)+c|S|

end for
s← s′

if s =terminal-state then
s← start-state

end if
end loop
return value-iteration(Pemp, R)

4. Experiments

In this section we empirically compare the algorithm we have suggested, IBE, to other algorithms
that use the exploration bonus method (Kolter and Ng (2009); Strehl and Littman (2008); Brafman
and Tennenholtz (2003)) and to the classical ε-greedy algorithm on two representative examples. In
the first example there is one transition probability that is much more stochastic than others and,
as expected, IBE outperforms the other algorithms. In the second example, which is a kind of a
’sanity-check’, all transition probabilities has a similar degree of stochasticity and we observe that
IBE has similar (even a slightly better) performance as the other algorithms. We start with a quick
review of the previous algorithms.

• ε-greedy: In the ε-greedy approach (see Sutton and Barto (1998)) the agent chooses the action
that it believed to be the best in the long-term with probability 1 − ε, for some parameter of
the algorithm ε, and it chooses an action uniformly at random, otherwise.

• R-max: Another approach uses the ”optimism under uncertainty” principle (see Brafman
and Tennenholtz (2003)). This means that if an action was not used enough times the agent
will imagine as if the action is extremely valuable. What is considered ”enough” time is a
parameter of the algorithm. Under this approach exploration is always valuable.
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• Bayesian Exploration Bonus (BEB) and Model-based Interval Estimation with Exploration
Bonus (MBIE): In (see Strehl and Littman (2005, 2008); Kolter and Ng (2009)) a psewdo
rewars is being defined R(s, a, s′) + ζ(s, a) where the exploration bonus, ζ(s, a), is some
decreasing function of number of times the agent selected the action a from state s. In Strehl
and Littman (2005, 2008) the exploration bonus ζ(s, a) = a√

visited(s,a)
and in Kolter and

Ng (2009) ζ(s, a) = a
1+visited(s,a) , for some parameter a.This approach actually includes the

”optimism under uncertainty” principle, if the bonus is large for state-action pairs that have
not been observed enough times.

4.1 Simulation: Maze with a Stochastic Square

Our evaluation environment (shown in Figure 1(a)) is a maze which is represented by a discrete
MDP with 16 states and four actions: up, down, right, and left. When the agent selects an agent
outside the border of the maze, it stays put. The agent starts the maze from the bottom-left corner
and ends the maze in the goal state, the bottom-right corner. When the agent reaches the goal state
it returns to the start state. All actions, except on the azure square, are deterministic (e.g., when an
agent goes up it will indeed go to square above it with probability 1). There is a cost of 1 at each
action, till reaching the goal state. On the azure square with action ”right” the transition probability
is completely different: with uniform distribution the agent will reach up, right, left or stays put.
The cost if the state reached is the square on the right is 0.5 and if the agent stayed in the same, up,
or left squares then the cost is 0.2.

The optimal path is through the azure square, but in order to learn it, the azure square and action
”right” must be observed many times while other states-action pairs should be visited much less.
We plot the results of the exploration bonus algorithms and ε-greedy. We have excluded the R-max
algorithm because the time steps required till convergence was significantly higher than the other
algorithms. We run each algorithm 5 times and we plot the average cumulative error (i.e., number
of time steps that a non-optimal action was taken) and the standard deviation. In this simulation and
the next, we have evaluated a wide range of values for the parameters of each algorithm and chose
the best for each (the same evaluation strategy was used in previous works Kolter and Ng (2009);
Strehl and Littman (2008)). In the IBE algorithm the sensory perception term in the free energy
should be less meaningful as the agent gain more observations, we enforce it by choosing, similar
to Fox et al. (2016), β := k ·

∑
a visited(s, a), for some constant k.

4.2 Simulation: Simple Maze

In the second evaluation environment (shown in Figure 2(a)) there is an obstacle (represented by
black squares) in the maze. The optimal path is going up twice from the start state, going right, and
then down to the goal state. For each action there is a small probability that the agent will follow
a different action than the one it selected. We see that IBE has similar performance to R-max and
MBIE (maybe even slightly better).

5. Conclusion

We have proposed the Information-Based Exploration algorithm which better utilizes the well-
known exploration bonus method. We have observed that previous algorithms that use this method
do not consider the states that the agent reached to design the exploration bonus. This observation,
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(a) Evaluation environment (b) Number of non-optimal actions selected ver-
sus time for different algorithms: MBIE, BEB,
ε-greedy, and IBE

Figure 1: Simulation 1 - maze with a stochastic square

(a) Evaluation environment (b) Number of non-optimal actions selected ver-
sus time for different algorithms: R-max, MBIE,
BEB, ε-greedy, and IBE

Figure 2: Simulation 2 - maze with an obstacle

together with tools from information theory enabled us to design a more sophisticated bonus func-
tion. In cases where the randomness of the a transition probabilities (i.e., KL divergence from the
uniform distribution) is varied, IBE errs less compared to other algorithms (R-max, MBIE, BEB,
and ε-greedy). In the algorithm we choose β → 0 in order to make sure that as the agent gain more
observations the bonus function decreases to 0. Other ways to enforce it can be investigated, for
example, by updating the prior using the empirical distribution.
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